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Abstract

Humans use emotional expressions to communicate their in-
ternal affective states. These behavioral expressions are often
multi-modal (e.g. facial expression, voice and gestures) and re-
searchers have proposed several schemes to predict the latent
affective states based on these expressions. The relationship
between the latent affective states and their expression is hy-
pothesized to be affected by several factors; depression disorder
being one of them. Despite a wide interest in affect prediction,
and several studies linking the effect of depression on affective
expressions, only a limited number of affect prediction models
account for the depression severity. In this work, we present
a novel scheme that incorporates depression severity as a pa-
rameter in Deep Neural Networks (DNNs). In order to predict
affective dimensions for an individual at hand, our scheme al-
ters the DNN activation function based on the subject’s depres-
sion severity. We perform experiments on affect prediction in
two different sessions of the Audio-Visual Depressive language
Corpus, which involves patients with varying degree of depres-
sion. Our results show improvements in arousal and valence
prediction on both the sessions using the proposed DNN model-
ing. We also present analysis of the impact of such an alteration
in DNNs during training and testing.

Index Terms: Depression, Affect prediction, Deep Neural Net-
works

1. Introduction

Humans use a variety of cues such as facial expressions, ges-
tures and non-verbal vocalizations to express their internal af-
fective states. The prediction of affective dimensions based on
such cues is a classical problem in the field of emotion recogni-
tion [1,2]. Research also links the impact of several factors onto
the affective expression of a person, such as mental health [3],
family [4] and social factors [5]. Depression [6,7] is one such
factor that influences emotion expressions. The depression dis-
order has been shown to impact emotion regulation [8], social
information processing [9] and emotional reactivity [10] of a
person. Tracking affective states of subjects suffering from de-
pression hence is a crucial problem as it is often associated
with events such as extreme emotional expression as well as
emotion insensitivity [11, 12]. Despite the existence of several
studies correlating depression with affective expression, a lim-
ited number of affect prediction models account for depression
severity during inference. For instance, in [13], the authors per-
form a feature transformation conditioned on depression sever-
ity before training/testing the affect prediction model. However
such a design is ad-hoc as the model optimization is carried
out independently of the depression severity incorporation into
the features. In this work, we propose a novel Deep Neural
Network (DNN) architecture to incorporate the severity of de-
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pression within the prediction of affective dimensions (valence,
arousal and dominance). The training scheme allows for a fea-
ture transformation, but also performs the model optimization
using depression severity as a model parameter. In addition to
the incorporation of the constant depression severity index value
into the DNN model, we further aim to understand the impact
of the depression severity on the DNN weights during training
as well as the final predictions.

Previoius work: Affective dimension prediction is a
widely studied problem in the emotion research community
[14,15]. These works focus on the prediction [16] as well as
analysis of emotion along the dimensions of valence, arousal
and dominance [17]. Previously proposed prediction models
include the use of ensemble methods [18], Kalman filter [19]
as well as the use of deep learning models [20]. Studies have
also jointly investigated depression and affective expression in
multi-cultural settings [21], for the purpose of understanding
emotion regulation [6] as well as understanding the perception
of emotion expression [22]. The Audio/Visual Emotion Chal-
lenge (AVEC) [23,24] has promoted the study of emotions and
depression, with specific focus on affect and depression pre-
diction. Proposed methods for affect prediction include the use
ensemble CCA [25] and Recurrent Neural Networks [26], while
methods for depression prediction include Fisher vector encod-
ing [27] and use of application dependent meta knowledge [28].
Gupta et al. [13] proposed feature transformation based on de-
pression severity to train an affect prediction system. However,
the model training is performed independently after the feature
transformation. In this work, we propose a DNN model that
uses depression severity as a parameter and the model learning
is directly dependent on the depression severity (unlike through
feature transformation as in [13]). Furthermore, the proposed
model could accept transformed features as inputs. Apart from
these contributions, another novelty of our work is the incorpo-
ration of a scalar parameter into the DNN architecture to predict
a time series. This scheme could be applied more generally to
similar problems involving time series prediction conditioned
on a set of hyper-parameters.

We perform our experiments on the Audio-Visual Depres-
sive language Corpus (AViD-Corpus) [23] involving subjects
with an available depression severity assessment. Correlation
analysis in [13] (Table 1) shows that there exist significant cor-
relations between the BDI-II depression index and affect rat-
ings on the AViD-Corpus. Given that depression severity does
carry information about the affective state of a person, we test
several schemes for incorporating depression severity in this
work. Initially, we develop a model to predict affective dimen-
sions from the audio-visual cues from the subject at hand. Then
we incorporate the depression severity assessment into affect
prediction using feature transformation and propose a method
to include depression severity as a model parameter. Our re-
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sults indicate that incorporation of the depression severity as a
model parameter obtains significant improvements (over base-
line models without the incorporation of depression severity or
with feature transformation only) for valence and arousal pre-
diction on two separate sessions of the AViD-Corpus, each with
a different recording protocol. In the next section, we provide
further details about the AViD-Corpus followed by a description
of the features and methodology.

2. Database

The AViD-Corpus was also used as a part of the Audio/Visual
Emotion and Depression Recognition (AVEC) challenges 2013
and 2014. We use the data split used in the AVEC 2014 chal-
lenge consisting of two sets of sessions: Freeform and North-
wind sessions. Both these sessions involve a human-computer
interaction with the Freeform sessions consisting of unscripted
response to a question on part of the human; while the North-
wind sessions require the participant to recite a predefined ex-
cerpt. Each of these sessions contain 150 videos, with a train-
ing/development/testing split consisting of 50 videos in each
partition. Each video is continuously rated for three affective
dimensions of valence, arousal and dominance at a frame rate
of 30 Frames Per Second (FPS) by a set of 3-5 annotators. The
final ground truth affect ratings are computed as the frame-wise
mean over the annotator ratings for a given session. Apart from
the continuous time-series affect ratings, the subjects in the
sessions also complete the standardized self-assessment based
Beck Depression Inventory-II (BDI-II) questionnaire [29]. The
questionnaire contains a set of 21 questions and a final BDI-II
index score is computed for each subject based on his/her re-
sponses. The score ranges between 0-63, with a higher score
implying more severe depression. The self-assessment proto-
col for BDI-II is crucial as this makes our approach scalable,
without the requirement for a specialized/professional depres-
sion severity assessment. In the next section, we describe the set
of features used in our study followed by the modeling schemes.

3. Multi-modal features

The goal of our study is to predict the continuous affective di-
mensions conditioned on the availability of a set of audio-visual
cues and the depression severity assessment in the form of BDI-
II index. We provide a description of the set of audio-visual
features used in our study below.

3.1. Audio features

We use a set of energy, spectral and voicing related features,
as were used in AVEC 2013-2014 challenges. Table 2 in [23]
provides a detailed list of these features. These features are
extracted at a frame rate of 100 FPS.

3.2. Video features

We use a set of Local Binary Pattern on Three Orthogonal
Planes (LBP-TOP) features [30] along with optical flow based
motion vector features and features derived from facial land-
marks using CSIRO Face analysis SDK [31]. The LBP-TOP
features are extracted in the pixel domain per frame along three
planes: the spatial (xy) and two temporal planes (xt and yt).
Note that the LBP-TOP features used in our experiments are
different from the LGBP-TOP features used in the AVEC chal-
lenges. The LGBP-TOP features are computed in the Gabor
domain leading to a high feature dimensionality. Since our ex-
perimentation is based on training neural networks and a high
feature dimensionality leads to a model with larger number of
parameters, we stick to the LBP in the pixel domain. More de-

3123

tails on the video features used in our work can be found in [16].
Note that the audio features are obtained at a higher frame
rate than the annotation and video feature frame rate. We down-
sample the audio features to the annotation/video features frame
rate (30 FPS) by averaging their value over every 1/30 seconds.
In the next section, we discuss our experimental methodology.

4. Experiments

We test several experimental methodologies to predict the af-
fective dimensions based on the multi-modal features and the
BDI-II index. Our baseline model is a neural network trained to
predict the affective dimensions based on the multi-modal fea-
tures only. We then test two schemes to introduce the depression
assessment in the prediction models: (i) using feature transfor-
mation based on the BDI-II score and, (ii) altering the neural
network architecture to introduce the BDI-II score. We use the
correlation coefficient (p) between the predicted and true ratings
for each affective dimension on the testing set as our evaluation
metric (also used in the AVEC challenges 2013-2014 [23,24]).
We discuss our baseline affect prediction model along with the
proposed models in detail below.

4.1. Baseline: Affect prediction based on multi-modal fea-
tures

Our baseline system is a DNN regressor trained on the multi-
modal features to predict the three affective dimensions. The
model is optimized on the training set to minimize the squared
error loss between true and predicted affect ratings. The number
of hidden layers and neurons in the hidden layers are tuned on
the development set. The hidden layers have a tanh activation,
while the output layer contains linear activation units. As the
affective ratings evolve smoothly over time, we further smooth
the predictions from the neural network using a low pass tempo-
ral filter. The smoothing operation has been shown to improve
the prediction in affective dimensions in [16]. We use a moving
average filter in our work, with the length of the filter also tuned
on the development set. Next, we describe the introduction of
depression severity in prediction of affective ratings.

4.2. Introducing depression severity in the feature space

In order to introduce the scalar BDI-II index score in contin-
uous tracking of the affective dimensions, we first experiment
with modifying/augmenting the multi-modal features them-
selves based on the depression severity. We briefly describe
our methods for introduction of depression severity score in the
feature space below.

4.2.1. TO0: Adding depression score as a feature

In this method, we add the depression score as an additional
feature to the existing set of frame-wise multi-modal features.
Therefore, the depression score is directly added as a source of
information in the feature space. Note that the additional feature
will be constant per frame for a given session, and varies only
across different sessions.

4.2.2. Feature transformation based on the depression score

In this method, we transform the existing multi-modal feature
space based on the depression severity index. Previously, Gupta
et al. [13] have proposed a few feature transformation tech-
niques for the same application. Although one could use one
of the several feature transformation techniques [32], the au-
thors proposed transforming feature means and variances based
on the depression severity. In our work, we test three schemes to
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Figure 1: Figure setting the notation for backpropagation
derivation as borrowed from [36] (section 5.3)

transform features mean and/or variances, identical to the ones
in [13], as discussed below.

(a) T1; Transforming feature means based on the de-
pression severity score: In this transformation, we alter the
feature means based on the depression severity. Given the BDI-
II index ds and multi-modal feature vector & (¢) for a session
s at the t"™ analysis frame, we compute the transformed features
@, (t) as shown in equation 1. This transformation changes the
features means for a session s by a factor of k., * ds. 11is a
vector of 1’s, of the same dimensionality as the feature vector
x5(t) and k,, is a constant to scale the depression score. The
neural network is trained on the transformed features z’, (t) and
km is tuned for the best performance on the development set.

L (t) = xs(t) + km xds x 1 (1)

(b) T2; Transforming feature variances based on the de-
pression severity score: In this transformation, we alter the
feature variances based on the depression score, by performing
the operation shown in equation 2. The parameter k41 scales
the depression score, while the parameter k42 is tuned between
{—1,1} so as to inversely or directly scale the features based
on the depression score. For a session s, the variance for its
features are scaled by (kg1 * ds)?**42. The neural network is
optimized on the transformed features from the training set and
the parameters kq1, kq2 are tuned for the best performance on
the development set.

xo(t) = (ka1 * ds)kd"’ X @4 (t) ?2)

(¢) T3; Transforming feature means and variances
based on the depression severity score: This transformation
alters both the means and variances of the feature set based on
the depression severity as depicted in equation 3. The neural
network is optimized on the transformed features from the train-
ing set, while the parameters k,,, k41, k42 are tuned for the best
performance on the development set.

xl(t) = (ka1 * ds)*? X &s(t) + b ds x 1 (3)

After training the DNN based on the extended/transformed
feature space, we perform the smoothing operation as discussed
in the baseline section 4.1. The length of the MA filter is sepa-
rately tuned on the development set for each modeling scheme.

4.3. M1: Incorporating depression severity as a DNN pa-
rameter

In the schemes presented above, the depression score was used
to alter the feature and the model was trained on these features.
Once trained, the model parameters remain constant for every
session in the testing set. In this section, we propose a scheme
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Figure 2: Figure representing the activation function (equation
4) and it’s derivative for different values of k,,

for the transformation of the neural network model based on the
depression severity score. Specifically, we alter the activations
of the hidden layers based on the depression severity d, for the
session s. This scheme is motivated from studies investigating
neuro-physiological changes due to depression, leading to alter-
ations in motor control [33,34]. This has an impact on the af-
fective expressions of a person as depression is hypothesized to
effect mechanisms controlling facial and vocal expressions. We
aim to capture these neuro-physiological changes in this scheme
by incorporating the depression severity score and then optimiz-
ing the affect prediction model. We also acknowledge that our
method for incorporating a parameter in DNNs is also inspired
from schemes such as incorporating I-vector inputs in Convolu-
tional Neural Networks for acoustic modeling [35].

Borrowing the notations for error backpropagation from
[36] (Section 5.3), the activation z; for a neural unit j is given
as: z; = h(a;), where a; is input the unit j (depicted in Figure
1). a; is computed as a; = Y, wjiz;, where z; are the activa-
tion of the units from the previous layer and w;; are the weights
for incoming connections to neural unit 5. In our previous mod-
els, we chose h(a;) = tanh(a;) for the hidden layer. During
model transformation, we modify the neural network such that
the activation is contingent on the depression score ds for the
session s, as shown in equation 4.

y = tanh(kp, * z); where kn = 1+ (km1 * ds)km2 4)

We briefly discuss the implications of this alterations during
training and testing in the sections below.

(a) Effect on training: We train the DNN based on the back-
propagation algorithm [36], involving iterative forward propa-
gation and a weight update steps. During the forward propaga-
tion, the model output based on the current weight values and
the features is computed. We plot the tanh activation function
with different values of k,, in Figure 2 and divide the plot into
two sections: (i) a dynamic section (shaded red), and (ii) an
asymptotic section (unshaded). With the modified DNN activa-
tion functions, an increase in k., leads to a steeper change in the
activation function from -1 to 1 in the dynamic section of the ac-



tivation function. Therefore, as k., increases, a small change in
a; leads to a greater change in zj, if a; is in the dynamic section
of the tanh function. Outside the dynamic section, z; tends to
be closer to -1/+1 with a higher k,,,. On the other hand, during
weight updates, the weights for connections linking a layer ¢ to
the layer j are updated using gradient descent (for more details,
please refer to [36]). In order to update the weights connecting
node ¢ to node j , the derivative of the Mean Squared Error £
is computed with respect to the w;; as follows:

OE _ OE Oa; _ ., o Oqy
8’(1},']' - aa]- awji =h (aj) ;wk](sk 811171 (5)

O0E , _ ‘

where 0 = a0 h'(a;) = 9a; tanh(kn, * a;)

The derivative is subtracted from the current weight esti-
mates to get updated weights. Figure 2 plots the derivative with
various values of k,,. We again divide the region into two sec-
tions corresponding to the (i) dynamic section, and (ii) asymp-
totic section. We observe that the derivative h’(a;) is higher
for a larger k,, in the dynamic region. Therefore, when a; lies
in the dynamic section of the activation function, a higher &,
encourages a higher weight update contribution for the corre-
sponding training data point. In the asymptotic regions, h'(a;)
is larger for lower k,,, however the differences in the magni-
tude of h'(a;) is not as large as in the dynamic section. a; val-
ues in the asymptotic domain of the activation functions have
a marginally greater impacts during weight updates, as k,, de-
creases.

(b) Effect during testing: During testing, a DNN produces
predictions on the inputs by performing one step of forward
propagation. As discussed above, a higher k,, leads the model
to be more sensitive to changes in inputs region of the activation
function. In the asymptotic section, outputs are closer to -1/+1.

Note that it is possible to train the transformed DNN model
on the original features as well as after applying one of the fea-
ture transformations discussed in section 4.2. We tune for the
best feature transformation/ no feature transformation on the de-
velopment set for the Freeform and Northwind sessions. We
also smooth the outputs prediction from the transformed DNN
model, with the length of the MA filter tuned on the develop-
ment set. The parameters k.1 and k.,2 are also tuned on the
development set. In the next section, we present results using
the various modeling schemes.

5. Results

We perform separate training and testing for the Northwind and
Freeform datasets due to the inherent differences in the nature
of these datasets. We present our results in Table 1. Our evalua-
tion metric is the correlation coefficient p between the true and
predicted ratings for the three affective dimensions.

From the results, we observe that not all the methods for
introduction of depression severity in affect prediction models
beat the baseline. However, the model transformation scheme is
the best in valence and arousal prediction. The results on predic-
tion of dominance are however not significantly different from
the baseline system. Overall, the improvement in prediction of
valence and arousal using model transformation is encouraging
and we further discuss the results and model settings in the next
section.

5.1. Discussion

During parameter tuning, we observed that the parameter k2
is tuned to be -1. We also observed that this configuration is also
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Table 1: Results (p) for the baseline and various depression
severity incorporation schemes for affect prediction. Bold num-
bers show the best performance for a dimension and also sig-
nificantly better than the baseline (Student’s t-statistics test, p-
value< 5% with number of samples = number of frames).

Freeform Northwind

Aro. Val. Dom. | Aro. Val. Dom.

Baseline | 0.48 0.38 0.31 | 0.38 0.26 0.21
TO 0.50 0.30 0.16 | 041 0.30 0.21
T1 042 0.35 0.26 | 0.32 0.27 0.20
T2 0.46 0.38 030 | 043 0.32 0.21
T3 0.45 0.35 022 | 036 0.24 0.20
Mi 0.51 0.40 0.30 | 045 0.32 0.21

significantly better than the one with k,,2 equaling 1. This im-
plies that for the subjects with a lower depression value the out-
put from the hidden nodes tends to be more sensitive to the in-
puts (in the dynamic region of inputs). Table 1 in [13] suggests
that the variance of affective dimension time series is negatively
correlated with depression severity. The tuned value of k2
is consistent with this observation wherein as the depression
severity increases, the output varies lesser with change in the
input features. For the transformation T2 also, the value of kg2
is also tuned to be -1. Therefore the variance of input feature de-
creases as the depression severity increases. Although the DNN
model is a non-linear model, lowering the feature variance for
high depression helps lowering the variance of predicted affect,
thereby improving the performance.

We also observe that our model does not improve upon
the baseline for dominance. Table 1 in [13] shows that de-
pression has no significant correlation with dominance statistics
for the Northwind data, while the correlation is the weakest in
Freeform dataset amongst the three affective dimensions. The
proposed model transformation method is not significantly dif-
ferent from baseline for dominance prediction, however does
perform significantly better for the valence and arousal. This
observation is consistent across the two datasets entailing dif-
ferent recording protocols, indicative of the capability of the
proposed model across datasets.

6. Conclusion

Despite affect prediction being a widely investigated problem,
there is only a limited amount of work on affect prediction con-
ditioned on depression severity. In this work, we proposed
a novel DNN scheme that incorporates depression severity as
a parameter during affect prediction. We use the depression
severity score to alter the activation function of the hidden layer
nodes during affect prediction for each subject (patient) at hand.
We analyze the effects of high depression values during DNN
training and prediction. Our results show that we obtain bet-
ter performance in arousal and valence prediction on the AViD-
Corpus: Freeform and Northwind sessions. The consistent in-
crease in performance across these sessions promises the effi-
cacy of our approach with further potential in similar tasks.

In the future, we aim to test a similar scheme in sequence
prediction model. Presently, we have trained a DNN model with
framewise inputs. We aim to test a similar schemes applicable
to Recurrent Neural Networks [15]. We would also like to test
our scheme on time series prediction in presence of multiple
factors (e.g. affect time series prediction conditioned on de-
pression severity and medical history). Finally, one could also
extend the current scheme to other similar problems involving a
time series generation conditioned on a global constant.
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